
Operating Systems

(605364)

Assist. Prof. Dhia Alzubaydi

 Faculty of Science and IT
 Al-Isra Private University
Amman, Jordan
2007-2008

1

Chapter 1: Introduction to Operating Systems

1-1 Definition of Operating System (OS)

Os is a set of programs that controls effectively the
computer resources and makes them conveniently available to
users i.e easy to use.

Os is rather complicated software and hence designed
usually by professional software companies and sold with
computer system as part of it. During computer operation,
some basic OS programs (Called Os Core or Kernel) are
resident in main memory while others are stored on hard disk
and loaded into memory when needed.

1-2 Functions of OS
The functions can be summarized as follows (will be
explained later in more details):

1- Management of computer resources (processors,
memory, disks, I/O devices, programs, etc.).

2-Scheduling resources among users (time sharing).
3-Protection of programs being executed in memory from

one another.
4-Providing a proper user interface e.g Graphics User

Interface (GUI).
5-File management.
6-Network communication.
7-Many others.

2

1-3 History of OS

This history can be summarized as follows:

1- NO OS: In 1940s, computers were simple; programs and
data were entered via mechanical switches.

2- Single programming batch processing Os : In 1950s,
operating systems were introduced and allowed users to
submit their data and programs as groups of punched
cards called " Batches". At that time, one job (program)
was allowed to be executed until completed.

3- Multiprogramming batch processing Os: In early 1960s,
OS allowed several jobs to be executed on time sharing
basis. This technique was called " multiprogramming" and
was introduced to make effective use of computer
resources.

4- MultiUser OS: In late 1960s, Users were able to make
interactive communication to computer via their
terminals. The OS introduced at that time allowed each
user to develop his programs independent of others
which means that computer resources were time shared
among users.

5- Network OS : In 1970s, computers were able to
communicate via a proper communication network. The
OS was also developed to make effective use of
network resources.

3

6- Disk Operating System (DOS): In 1980S, personal
computers (PCs) were introduced and proper operating
systems were developed for such computers. These OSs
were stored on disks.

7- Windows Operating System : In 1990s, OSs were
developed to allow GUI to users which encouraged non
specialized persons to use computers and buy them.

8- Present OSs : Nowadays, OSs are quite advanced and
allow multithreading, multiprogramming, multiprocessing,
virtual organization, client/server application, etc.

1-3 OS Examples

MS-DOS: Single user, single programming, no GUI.

Windows: Single user, multiprogramming, with GUI.

Unix : Multi user, multiprogramming.

End of ch1

4

Chapter 2: Basic Concepts of Computer

System

2-1 Introduction

Studying basic concepts of computer system is essential for
understanding OS concepts.

2-2 Block Diagram of Simple Computer System

A simple computer system is shown in fig 2.1. The
components of this diagram can be explained as follows:

Power
supply

Reset
circuit

interval
timer

Clock
generator

Address
decoder

Memory
(ROM
 and

 RAM)

MMU

Hard
Disk
Drive

HD
controler

I/O
Devices

I/O
controler

CPU
(processor)

CLK

INT1

Power

Reset

Fe
w

 M
S

B
 li

ne
s

Address Bus

Data Bus

Control Bus (RD, WR, BusReq, BusAck, INT2, ….)

S2 S0S1

CSCSCS

Chip
select

cl
oc

k

Ti
m

er
 s

ig
na

l

Reset Buttom

Fig 2.1 Simple Computer System.

5

1- CPU: Central processing Unit is the main unit of any
computer system. The CPU consists of Arithmetic Logic
Unit (ALU) and Control Unit (CU).the main registers
included in CPU are:

• Sp : Stack Pointer Register which holds an address
pointing at a location in memory called " Stack Top".

• PC : Program Counter Register which holds address
of the next instruction to be executed.

• A : Accumulator Register which holds the result of
any arithmetic or logic operation.

• PSW : Processor Status Word Register which holds
flags showing the status of any arithmetic or logic
operation (Zero, overflow, carry, etc).

• Data Registers (B, C, D,E) which act as fast
storage for temporary data.

2- Clock Generator : it is essential electronic circuit
generating periodic pulse signal called "clock" as shown
in fig 2.2. It is worth remembering that all actions in a
computer system are timed precisely and synchronized
with clock edges. The clock frequency (1/T) determines
the computer speed to a large degree in addition to
other factors.

6

Rising edge

Falling edge

T T

t

Fetch
next

instructi
on

Fetch cycle Decode cycle Execution
cycle

Instruction cycle

Several machine cycles

Several states (clock cycles)

Machine cycle

Clock
signal

5 volt
0

State (one cycle)
(T= 1 nsec for clock=1 GHz)

Machine cycle Machine cycle

Fig 2.2 Instruction Cycle

3- Reset Circuit : when a reset button is pressed, a pulse
signal is issued to CPU which forces a value of Zeros to
PC and an instruction fetch cycle is started from a
location in memory pointed at by pc. This means that "
Reset" forces computer to start execution of a program
loaded at address zero (Usually BIOS program stored in
Read Only Memory ROM).

4- Interval Timer : It generates a periodic pulse but much
slower than clock generator. Each Timer period is called
“Time Slice” and equivalent to millions of clock periods
(states). This means that during a Time Slice, it is
possible to execute part of a program. The interval
timer, as will be shown later, has a big role in
multiprogramming system.

7

5- Power Supply : It is necessary for CPU and all other
components.

6- Memory : It is the second important unit in any
computer system (after CPU). It is very fast
addressable storage. It is used to hold programs when
they are being executed in addition to other functions
(e.g stack,…) there are two types of memory:

• Random Access Memory (RAM) used for storing
programs and data temporarily.

• Read Only Memory (ROM) used to hold programs
and data permanently (e.g BIOS).

The memory can be visined as shown in fig 2.3 i.e set of
addressable locations that may hold data.

1 0 0 0 1 0 0 1 0 0 0 0
1 1 1 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 2
1 0 0 1 1 1 0 0 0 0 0 3

.

.

.

.

.

.

.
1 0 1 1 0 0 0 0 F F F D
1 1 1 0 0 1 1 1 F F F E
0 0 1 1 0 0 0 0 F F F F

Fig 2.3 Memory of 64 K bytes.

8

Address in Hex
(16 bit address)

Memory
location

(8 bit size)

8 bit = byte

Memory
location

(٨ bit size)

7- Hard Disk Drive : It is a large volume of permanent
storage for programs and data but it is not addressable
and of slow access as well.

8- I/O Devices : the computer is not useful unless
interfaced to external world such as printers,
keyboards, displays, scanners, mouse, camera, etc.

9- Controllers : To connect any device to CPU, it is
necessary to use a proper interface circuit (card) called
" controller". The controller is usually driven by a proper
program called " Driver". This means that " Controller"
is a hardware (H/W) while "driver" is a software (S/W).
Here, it is worth noting that a "Drive" is different from
"Driver" as it represents the instrument itself e.g disk
drive which consists of disk, motor, electronic circuits,
heads, etc. Also it is worth noting that a memory
controller is usually called as Memory Management Unit
(MMU).

10- Address Decoder : Few of most significant address
signals are decoded to enable selection of one device
that should respond to CPU.

11- Address Bus : Set of copper lines carrying electrical
signals (voltages) which are used to select one location
only in the whole computer system whether for " Read"
or "Write" cycles.

12- Data Bus : several lines carrying data to or from
addressed location.

9

13- Control Bus : Several Lines having several functions.
One line, for example, is used to carry "Read" signal to
declare that a cycle is a "Read" one.

14- Interrupt (INT) : It is input signal to CPU which when
"active" forces certain value (address) to PC and
initiates instruction cycle and hence the CPU starts
executing " Interrupt Subroutine".

2-3 I/O Data Transfer

 There are several methods for transferring data between
I/O devices and memory as follows:

• Programmed I/O.
• DMA I/O.

2-3-1 Programmed I/O

There are two types:
• Polling I/O
• Interrupt I/O

In polling, CPU executes a program to scan I/O device
periodically to check its need for service. In interrupt I/O,
there is no scan at all, however, when I/O device requires
service, it activates an interrupt signal to CPU and hence
interrupt subroutine will be executed which should provide
the requested service.

10

2-3-2 Direct Memory Access (DMA)

There are two useful control signals for this operation
which are: BusReq and BusAck.
BusReq is an input signal to CPU and when activated, it
forces CPU to separate itself from its external "Buses" at
the end of machine cycle. When separation occurs, CPU
activates BusAck signal to inform I/O devices that they
can use all the Buses.

Now, it is possible to explain DMA as follows:-
1- I/O device activates BusReq line and wait till BusAck is

activated.
2-When BusAck is activated, I/O device can master the

Buses and hence use them to address memory and make
data transfer between Memory and I/O device.

From the above, it is clear that programmed I/O is
implemented by making CPU executes a proper program
while in DMA, the CPU does not interfere as it separates it
self from its Buses.

11

2-4 CPU Modes of Operation (States)

There are two main modes:
• Supervisor Mode : In this mode, the CPU can

execute all instructions including " user "and"
privileged" instructions.

• User Mode : In this mode, the CPU can execute "
user" instructions only and can not execute
privileged instructions.

The CPU modes are useful for programs protection in multi
programming environment.

2-5 Bootstrapping

When a computer is powered up , or Reset activated, BIOS
is started and loads " Boot Sector" from disk (Hard, CD,
floppy). The Boot Sector contains a program which enables
loading of main OS components into memory which then
started. the above operations are called "Bootstrapping"
which aims at loading OS into memory and running it.

2-6 Types of Interrupts

Interrupt means forcing CPU to change its mode to
supervisor and make subroutine call at any time of program
execution. The causes of interrupts may be external or
internal and hence we have the following types:

12

1- Hardware Interrupt : This is caused by activating
interrupt input to CPU by an I/O device or interval
timer.

2- Software interrupt : This has two types :

a- Exception : this occurs due to any of the
following events:

- Divide by zero (overflow)
- Address violation as will be explained later.
- Page fault as will be explained later.
- Others.

b- System Call : These are normal user instructions
but have the effect of interrupt which is
basically changing CPU mode from " User" to
"Supervisor" and making subroutine call. The call
does not cause address violation as the CPU
becomes in a supervisor mode.

2-7 Application Programming Interfaces (APIs)

APIs are set of subroutines that control computer
resources and considered as part of OS. A user program
(application) can use these APIs by calling them via special
instructions called "System Calls". A system call acts as a "
software interrupt" and hence changes CPU mode from "
User" to " Supervisor" which in turn prevents an " address
violation exception" from occurring.
Here, it should be noted that if user program tries to use
normal subroutine call instruction then an address violation
exception will occur as the called address is outside user
program " address space" as will be explained later.

13

2-8 Multiprocessing

It is equivalent to " multiprocessors" and not to " multi
processes". Multiprocessing means that CPU consists of
several processors sharing memory and controlled by single
OS for the purpose of speeding up computer operation.

2-9 Buffering

A " Buffer" is an area of memory for holding data
temporarily during data transfer between running program
and I/O device. This technique speeds up the computer
operation. Examples of these buffers are:

a- Hard Disk Buffer :
 In this case, OS writes data quickly to disk buffer (i.e to
memory) and later on data will be transferred to the slow
disk drive. When reading, the reverse occurs.

b- Keyboard buffer:
 It is used to hold characters typed by a slow user and
later the running program will process these characters.

2-10 Spooling
It is , also, a technique for speeding up computer operation.
In this case, the data to be written to a very slow device
(e.g printer) are written, first, to intermediate medium
speed device (such as disk) and later on transferred to the
slow device.

14

2-11 Structured Program Development Cycle
This cycle is shown in fig 2.4.In this figure, we notice

problem to be solved by
structured program

Analyst

Loader

Linker

Compiler

Editor

Programmer

program debugging using
debugger and supervised

by OS

person

flow chart (Algorithm)

person

source code on paper

program

source code on disk

program

non-complete object code
on disk

program

complete object code (Relocatable)
on disk

program

Absolute machine code in
memory

Test and Debug
program

No
Errors

Completion of Cycle

Errors

To previous
stages

Errors

To previous
stages

Errors

Errors

Other object modules
(I/O, Library,)

Fig 2.4 structured Program Development
The followings:

15

1- Object code is non-executable machine code as it is
stored on disk and its addresses are relocatable i.e
have to be modified when loading into memory for
execution.

2-Absolute machine code is executable code as it is loaded
into memory and its addresses have been modified
accordingly.

2-12 Basic Property of Absolute Machine Code

The basic property can be stated as follows:
"Absolute Machine Code" can not be displaced in memory,
in other words, if this code is moved to another area of
memory then it will not be executed correctly.
The reason behind this property is the addresses used in
the code as shown in fig 2.5. In this figure, the symbol "
START" is replaced after compilation, linking, and loading
by the address "00010000". If we move this code to

Address Machine Code Mnemonice

0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 START: MOVE R1, R2
0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 ADD R3, R4
0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1
0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 JC START

0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 ADD R1, R3
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

Fig 2.5 Absolute machine Code Program

16

A memory area starting at address 10000000, then it will
not be executed correctly because of "START" value as
shown in fig 2.6.

Address Machine Code Action

1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1
1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1

.

.

.

.

.

.

.

.

.

.

.

.

Jump operation will be
to address (00010000)
while it should be to
(1000000) in order to
get correct execution

Fig 2.6 Displaced Absolute Machine Code Program
(Execution will not be correct).

2.13 Useful Terms

1- single programming : One program is executed by CPU
until completed.

2- Multiprogramming : Several programs are executed by
single CPU on timesharing basis.

3- Single User : One user is allowed to use a
computer at any one time. The OS can be single
programming or multiprogramming.

4- Multi User : Several users are allowed to use a
computer at any time. The OS must be multi
programming.

5- Multiprocessing : The CPU consists of several
processors sharing same memory and controlled by one
OS.

17

6- Sequential programming : A program consists of one
stream (thread) of instructions to be executed
sequentially.

7- Parallel programming : A program may have some
parallel streams (threads) that can be executed
concurrently.

8- Task : Single thread or sequential program being
executed.

9- Multitasking : Several tasks may be executed either
on timesharing basis (case of single processor CPU) or
in parallel (case of multiprocessing). Parallel
programming will be explained later.

10- Multiprocesses :It is the same as multiprogramming
and not as multiprocessors.

11-Interactive Computing : The user is directly connected
to computer and works " On- Line".

12- Batch Computing: The user is off line and not connected
to computer but submits his job as a batch of cards or
on other media (paper tape, disk, magnetic tape,…)

13- Real Time : The computer is connected to a factory
and commanding it in real time using input and output
signals.

End of
ch2

Ch3 Process Concepts

18

3-1 Introduction

Process concept is necessary for multiprogramming
implementation. In multiprogramming, a CPU has to be time
shared between several programs and hence extra work
(overhead) is necessary from the side of OS to achieve the
timesharing operation. The overhead includes process
creation, context switching, process state transitions, etc.

3-2 Motivations for Multiprogramming

In single programming, each job (program) has to be
completed before starting new one. We all know that any
program is actually useless without I/O activities. These
activities are usually very slow compared to CPU activity
which means that a lot of CPU time will be wasted in waiting
I/O requests to be completed as shown in fig.3.1. To solve
this problem, a multiprogramming concept was introduced.
This introduction created many new problems to be solved by
OS such as processor scheduling, memory organization,
memory management, protection, and actually all topics to be
studied in this course.
The CPU utilization in multiprogramming is high as there is no
waiting and overhead is comparatively small as shown in fig
3.2.

19

Idle Time
(CPU is waiting)

I/O
completed

I/O
request

Idle time

Program
starts

running

Process Time
(program is

running)
Process Time

Time
(t)

Program is blocked
and CPU starts waiting

I/O
request

Process Time

I/O
completed

Fig 3.1 CPU Utilization in Single Programming
 (Idle Time>>Process Time)

Process 1 Time Process 2 Time Process 3 Time

Program 1
starts running

Program 1
requests I/O

service
OS is running

(overhead)
OS is running

(overhead)

Program 2
requests I/O

service

Time

Program 3
starts running

Program 2
starts running

OS starts
Running

Blocked Blocked

Fig 3.2 CPU Utilization in Simplified Multiprogramming Case.
 (Overhead>> Process Time)

In fig 3.2, the diagram is simplified to show the main idea,
however, multiprogramming is more complicated as will be
shown later.

20

3-3 Definition of a Process

A process is a program in execution, described by a Process
Control Block (PCB), and has several states (Ready, Running,
Blocked, etc.).

From this definition, we can conclude the main differences
between program and process as shown in fig 3.3 (PCB will be
explained be later).

Program Process
Stored on disk Resident in memory
Addresses are relocatable Addresses are absolute
Can be moved to another
area on disk

Can't be displaced to
another area in memory

Has one state which is
" non-executable"

Has several execution
states (Ready, Running,….)

Does not have PCB Has PCB
Can't be allocated CPU
time

Allocated CPU time

Contains object code Contains absolute machine
code

Program image includes
object code only

Process image includes
machine code, data, and
stack

Occupies smaller area on
disk (image size is smaller)

Occupies larger area in
memory (image size is
larger)

Fig 3.3 Comparison of Program and Process.

21

3-4 Basic Process State Diagram

This diagram is shown in fig 3.4 where we notice the
followings:

Running

Ready Blocked

One process only at
this state at any
instant of time

completion
Return to OS

Disp
atch

Tim
er r

uno
ut

Qua
ntu

m Exp
ire

d

Ordered list of
processes

waiting to be
allocated CPU

time

Not ordered list of
Blocked

processes waiting
for I/O services to

be completed

I/O Request
(Block)

Allocate CPU time to
process (initiated by OS)

Loading by
OS loader
and PCB is
created in
memory

Program
on disk

I/O Completed

(Wakeup)

Fig 3.4 Basic Process State Diagram

1. At any instant of time, there is only one process running i.e
allocated CPU time.

2. Exit from Running state may occur as a result of any of
following events:

• Completion of process.
• Request of I/O service by a process.

22

• Time slice determined by interval timer has
expired and hence an interrupt is activated which
forces CPU to run OS instructions.

3. The transfer from Ready to Running state (dispatch) is
carried out by OS according to certain criteria as will
be shown later when studying " Processor Scheduling".

4. The term " Execution " means generally, " Ready", "
Running", or " Blocked".

3-5 Process Control Block (PCB)

PCB is a data structure describing a process and resident
in memory as shown in fig 3.5.
Each process has its own PCB in memory and assigned a
process Identification Number (PID).
The locations of PCBs is kept in a special table called "
Process Table" which is resident in memory and used by
OS.

23

 PID PCB
1 Address 1
2 Address 2
. .
. .
. .
. .
. .
n Address n

PC
SP

Other registers
State

Address Space
Priority

Children
Opened Files

Others

Execution context
(values in CPU

registers)

Process Table
(Resident in Memory)

Address

PCB for one process
(Resident in Memory)

Process state
(Running, Ready,

Bloched)

low and
high

Addresses
of Process
Image in
Memory

Fig 3.5 Process Table and PCB

Now, it is very useful to show the different components
resident in memory in a from called " Memory Map" as
shown in fig 3.6.

24

Memory

Fig 3.6 Memory Map.

Os Code
(Kernel, I/O drivers, Interrupt

subroutines, command
interpreter, …)
Process Table

PCB 1
PCB 2

.

.

.

.
PCB n

Other OS data
OS Stack

Process 1 Code
Process 1 Data
Process 1 Stack
Process 2 Image

.

.

.
Process n Image

Free Space
(used as needed)

25

OS
Space

(System
Space)

Low Address

High Address

Process 1
space

Define
PCB

locations

Process 1
Image

3-6 Context Switching

Context means contents of CPU registers at certain
instant. During process running, a context changes with
time. When a process exits running state to ready or
blocked, the context has to be saved to PCB so that it can
be reloaded when the process return to running state.
Context switching means saving a process 1 context to
PCB1 and reloading process 2 context from PCB2. context
switching is carried out by OS when process exits running
state and process 2 is dispatched to this state as shown in
fig 3.7.

t

t

Time slice

Interval
Timer
Signal

Action OS

Process 2
running

OS

Over-
head

Process 3
running

OS

Process 4
running

OS

Context
switching

Context is
saved to

PCBI

Process 1
running

CPU interrupt interrupt interrupt interrupt

Context
 is reloaded
from PCB2

Context
switching

Context
switching

Time slice (Quantum)Time slice

Fig 3.7 Context Switching.

26

3-7 Swapping
When memory is full and new program is required to be
executed then OS has to carry out a swapping process as
follows (see fig 3.8) :

1. Save resident process image to disk. The process
should be in ready or blocked state (or suspended
state which is preferred as will be shown later). The
memory space of that image becomes free (empty)
and may be used for new process. This free space is
called " Swapping Area".

2. Load the new program from disk to swapping area and
create a PCB for it (create new process).

3. When the old process is needed to run again, it has to
be reloaded to its original space i.e to the swapping
area, however, after saving the new process to disk.

Program 5

Process 2
Image

Program 2

Process 5
Image

P4

P3

Process 2
Image
(P2)

P1

os

Other
programs
and files

Disk Memory

Load

Save

Reload

Save

2

1

4

3
Swapping

Area

27

Fig 3.8 Swapping Sequence.

It should be noted that a swapping area may used for
swapping several processes, also, it is possible to have
more tan one swapping area when necessary.

3-8 Inter Prcess Communication (IPC)

IPC is some times necessary but it presents two main
problems:

1. Address violation problem :IPC means sharing some
data (access common locations in memory). The
shared data will be outside the address space of at
least one process which, in turn, creates address
violation problem. This problem may be solved by
using "System Calls" for shared variables.

2. Write Access Problem : If the shared variable is of
type Read/Write then another problem has to be
solved in order to keep data integrity. This topic will
be discussed later when studying "Asynchronous
Concurrent Execution".

28

3-9 Process State Diagram with Suspend and Resume

Some OSs allow two other process states called "Suspended
Ready" and "Suspended Blocked" as shown in fig 3.9. A
process may be suspended up on user request (if allowed) or
upon OS needs. The suspended process will not compete for
CPU time and may be swapped out to disk if memory is full
and free space is needed for new processes. The suspended
process may be resumed later.

Ready

Suspended
Blocked

Suspended
Ready

Running

Blocked

program
On
disk

Load
I/O Completed

I/O
 Request

Dispatch

Quantum Expired

Suspend

completion

R
es

um
e

S
us

pe
nd

I/O Completed

R
es

um
e

S
us

pe
nd

Fig 3.9 Process State Diagram with Suspend and
Resume.

29

3-10 Kernel of OS (Core, Nucleus)
Kernel is the most important part of OS, therefore, it
remains resident in memory while other parts of OS may be
shuttled (swapped) between memory and disk. The main
functions of kernel are:

• Process creation and destruction.
• Process state switching and context switching.
• Dispatching, suspension, and resumption.
• Manipulation of PCBs and process table.
• Interrupt handling.
• I/O handling.
• Memory allocation and deallocation.
• Processor Scheduling.
• IPC.
• File system management.
• Many others.

It should be noted that user applications (programs) can
communicate with kernel via using system call instructions
only (Remember that Kernel runs in CPU supervisor mode
while applications run in CPU user mode).

End of ch3

30

Chapter 4: Processor Scheduling

4-1 Introduction

Processor scheduling means assignment of CPU time to
processes, in other words, allocation of CPU time slots to
processes. This operation is dynamic and gets more
complicated in case of multiprocessing system.

4-2 Type of Processes

The applications have different time requirements,
therefore, can be classified as follows (see fig 4.1):

1. Batch : It is off line processing and time is not an issue
here.

2. Interactive : It is on line processing and time is not
critical. Delays are allowed as long as they don't exceed
certain limit.

3. Real Time : It is a real time processing and the time
here is critical because the application may be critical
such as a computer controlling a nuclear factory. The
computer response should be immediate at certain
instants of time.

4. Dead line : A process (job) should be completed before
certain instant of time.

31

5. Streaming : A process needs regular attention as the
case of audio and video.

Fig 4.1 Some Types of Processes

4-3 Scheduling levels

The main levels are:

1. High level : determines which jobs (programs) shall be
allowed to compete for system resources and hence
called " Admission level " or " Admission scheduling" .
when a program is admitted, it is converted to a
process i.e process is created in Ready state.

32

User 1

User n

Multiuser
computer

FactoryComputer

computeruser

Terminal

Terminal
(key border +

Display)

Manual
submission

of job

B - Interactive

C- Real Time

A - Batch

2. Intermediate levels : determines which processes to
be suspended or resumed in order to balance load on
computer resources (CPU, memory,….).

3. Low level : determines when to transfer processes
from state to another i.e from Ready to Running,
from Running to Blocked, etc.

4-4 Scheduling Objectives

The main objectives are:
1. Be Fair between processes.
2. Maximize number of completed processes per unit

time (Called Throughput).
3. Avoid indefinite postponement of any process (Called

Starvation Free).
4. Minimize "Overhead" i.e minimize wasted time in

scheduling itself.
5. Balance resources usage i.e makes use of all resources

all the time.
6. Enforce priority scheme to allow some processes to

get more CPU time.
7. Degrade gracefully under heavy loads.
8. Others.

To achieve these objectives, scheduling algorithm should
consider the following factors (called scheduling criteria):

• How much total running time has been spent on a
process and how much is needed to complete it (if can
be estimated).

33

• Does a process generate a I/O request before
quantum expired.

• Real time jobs (processes) are more important (higher
priority) then interactive, also, interactive are higher
priority than batch.

• How frequently a processes is generating page faults
(will be studied later).

• Other factors.

4-5 Preemptive and Non preemptive Scheduling

Once a process starts running, it has full control over CPU
until an interrupt occurs. Usually, the interval timer is used
to interrupt CPU in order to make context switching from a
process to another. If interrupt is masked out then a
process will continue controlling CPU without allowing other
processes to share CPU time. This means that we have two
types of processes:

1. Non preemptive : once a process has been given a CPU,
the CPU can't be taken away from it i.e interrupt is
make out. This type is useful for OS operation which
masks out interrupt until it completes its work then it
enables interrupt and transfer control to normal
process. Here, it should be noted that masking and
enabling interrupt are privileged instructions and can't
be executed in user mode (it is common mode for user
processes).

34

2. Preemptive : The CPU can be taken away from a process
i.e interrupt is enabled (Usual user process operation).

4-6 Time Slice (Quantum)
 As mentioned earlier, CPU in multiprogramming is
interrupted regularly by interval timer signal which is
a periodic of period called " Time slice".
If time slice is small then interrupt will occur very often
which means large overhead time is wasted in frequent
context switching from process to process. In the other
hand, if time slice is too large then short time jobs have to
wait long time before completion.

4-7 Priority

If jobs are not of equal importance then priority scheme has
to be enforced in order to schedule more CPU time to higher
priority jobs. Priority scheme can be " static" i.e fixed with
time or " dynamic" i.e changes with time. On the other hand,
if jobs are of same priority then "quantums" are assigned
periodically to them.

4-8 Types of Scheduling (Scheduling Algorithems):

The main type are:
• FIFO
• Round Robin
• Multilevel Feed back Queues
• Others

35

4-8-1 First In First Out Scheduling (FIFO)

In this type, processes are dispatched according to arrival
time on "Ready Queue". Once a process has the CPU, it runs
to completion. FIFO is a non preemptive scheduling and
hence it can be used in "single programming" environment
(see fig 4.2).
In multiprogramming, it can not be used as a master scheme
but as part of it.

CPU

Run

Ready list completion

D C B A

A

B C
Can’t be

interrupted

Run
time

Fig 4.2 FIFO Scheduling (non preemptive)

4-8-2 Round Robin Scheduling

Processes are dispatched FIFO but given a slice time only
each turn (round) as shown in fig 4.3. The scheme is useful
in multiprogramming. However, it does not support priority
as shown in fig 4.4.

P1

P3 P2

CPUP1P2P3P4

RUN TIMEBack of ready queue

Processes ready list (queue)

Quantum expired

(preemption) by timer interrupt

completion

Context switching
Every quantum

Shorter
process is
completed

first

Fig 4.3 Round Robin Scheduling
36

P1
Running

P3
Running

OS
Running

P4
Running

OS
Running

OS
Running

P2
Running

OS
Running

Run for one
quantum

Carry out context switching from
P1 to P2 (takes very short time)

dispatchTimer interrupt actiondispatch

CPU in
supervisor

mode
(interrupt
masked)

CPU in user
mode

(interrupt not
masked)

Fig 4.4 Running Sequence in RR

4-8-3 Multi Level Feed back Queue Scheduling

It is preemptive scheduling with the following features (see
fig 4.5) :

CPU

CPU

CPU

CPU

Ready list processes

preemption

preemption

preemption

preemption

Load

Program on
disk

Level 1

Level 2

Level 3

Level 4

(highest
priority)
 FIFO

FIFO

FIFO

(Lowest
priority)

 RR

completion

Run Process
for a Quantum

Fig 4.5 Multilevel Feed back Queue Scheduling (preemptive)

37

1- Supports dynamic priority where newly created
process is given the highest priority level.

2- Priority has several levels. This means that any process
will not be assigned any quantum as long as there are
processes not completed (waiting) in higher priority
levels.

3- Each process will be given several quantums before
reaching lowest priority level. This means that short
jobs will be favored and completed quickly while long
running time jobs (Called CPU bound jobs) will not be
favored and given least priority after several
quantums.

End of
ch4

38

Chapter 5:

 Memory Organization and

 Management in Real Memory

 Systems

5-1 Introduction
There are two types of computer systems differing in CPU
design and consequently in memory organization and
management.
The first type is called "Real Memory System" while the
other is "Virtual Memory System".
Both systems are quite similar as far as the main memory is
concerned which means that the term "Virtual Memory" is
misleading as will be shown later.

5-2 Definition of Organization and Management
Memory organization means "Logical Partitioning" of memory
and program while management means how to use memory
partitions to load program partitions so that memory usage
becomes very efficient.

5-3 Program Execution Conditions in Real Memory
Systems
As mentioned earlier, these conditions can be summarized as
follows:

1- Program should be in absolute machine code.
2- Program should be resident in memory.
3- Program addresses should be identical to memory

addresses where it is resident.

39

4- Program should be loaded in contiguous locations in
memory.

5- Program should not be partitioned.
6- Whole program should be resident in memory.
7- In multiprogramming, additional conditions need to be

considered such as creating PCB and other stuff.

5-4 Memory Organization in Real Memory Systems

The memory can be logically partitioned in fixed manner
(fixed partitions) or variable one. As programs are generally
of variable sizes, fixed organization (static) is not very
suitable and variable organization (dynamic) is much
preferred.
The variable partitioning differs with the type of OS,
whether, single or multiprogramming.

5-4-1 Variable Organization in Single Programming OS

In this case the memory map looks like Fig 5.1 where we
notice the following:

1- OS occupies fixed partition while process occupies
variable one.

2- Program (Process) always starts at address (a) and
hence linker output can be absolute machine code
ready for direct loading without address relocation.

3- If process volume is larger than available memory
then "overlay" technique has to be used (will not be
discussed as it is rarely used).

4- To protect OS from program, a boundary register has
to be available in CPU and loaded with address (a).

40

Each program generated address is compared with
boundary value and if it is smaller than it then
address violation exception occurs.

5- Memory usage is not efficient as there may be an
empty area that is not occupied with a program.

 Memory CPU

Figure 5.1 Memory Organization in Single
 Programming OS

5-4-2 Variable Organization in Multiprogramming OS

In this organization, the memory map looks like fig 5.2 where
we notice the following:

1- The process images are of variable sizes.

OS Area
(Fixed) OS

Program
Area

(variable)
Process Image

Unused
(Empty)

41

a
a

Boundary
register

2- When a process is completed, an empty area is left
(called Hole).

3- When a program is loaded into memory, the loader
has to relocate the addresses according to memory
origin where the program is to be resident.

4- Adjacent holes can be merged together by OS to
create larger hole "Merging" as shown in fig 5.3.

5- Program protection requires two boundary registers
in CPU. Each generated address is compared with this
boundary registers and if it is outside them then an
address violation exception occurs.

6- All holes may be moved by OS to one area
(compaction). The compaction operation is difficult as
it requires address relocation of all processes images
to the other memory area as shown in fig 5.4.

7- When memory is full and new program needs to be
executed then swapping operation is carried out by
OS.

42

 Memory CPU

OS

P1

P3

P4

Unused

OS

P1

P2

Hole

43

Process address
space

a

ba

b

P2

After some time (P3 is completed)

High address
boundary register

low address
boundary register

P4

Unused

Fig 5.2 Memory Organization in
 Multiprogramming OS.

OS

Hole 5

P4

Hole 3

Hole 2

P1

P6

OS

Hole 5

P4

Hole (2+3)

P1

P6

Merging

Small
over head

 Fig 5.3 Merging Operation

44

OS

Hole 5

P4

Hole 3

Hole 2

P1

P6

OS

P6

P4

P1

Holes
(2 + 3 + 5)

Same locations

No relocation

Address
 R

eloca
tio

n

Address
 Reloca

tio
n

Large
overhead

Memory Memory

All
processes

in
One
 area

Holes In
one area

 Fig 5.4 Compaction Operation

5-5 Memory management in Real Memory Systems

There are several strategies to manage memory in order to
get efficient use of it. These strategies are applicable to
multiprogramming systems and can be summarized as follows:

5-5-1 Fetch Strategies
These determine when to fetch the next piece of program or
data i.e. when to load them from disk to memory. Here, there
are two schemes:

1- Demand fetch: Load the next piece when needed.
2- Anticipatory fetch: Load the piece when it is

expected to be needed. This early fetch may speed up
the system when the expectation is correct,
otherwise, it is mere waste of time.

45

5-5-2 Placement Strategies

Theses determine the proper memory space (hole) to place
job (process) into it. The main strategies are:

1- Best fit: place the job in the smallest possible hole.
The disadvantage is that the rest of hole will not be
enough for new job (see fig 5.5).

2- First fit: place the job in the first suitable hole. The
advantage is low overhead i.e. small CPU wasted time
in implementing the strategy (see fig 5.5)

3- Worst fit: place the job in the largest available hole.
The rest of hole may be still enough for new job (see
fig 5.5)

46

P!

hole

OS

P8

hole

P6

P5

hole

P3

hole

P10 P9P11

First
 fit

Best fit

Worst fit

Image of
10000 byte

Memory

15000 byte

10200 byte

25000 byte

8000 byte

Programs
on disk

 Fig 5.5 Placement Strategies

5-5-3 Replacement Strategies

These determine which piece of data or program has to be
swapped out to disk when memory is full and a new program
is needed to be executed.
These strategies will not be explained here, however, similar
strategies will be discussed in virtual memory systems.

 End of Chapter 5
47

Chapter6: Virtual Memory Organization

6-1 Introduction
As mentioned earlier, "Virtual" is misleading name and a
better name could be "Dual Addressing computer systems"
because of the following reasons:

- Virtual memory systems are similar to real memory
systems in having a physical main memory and memory
address bus.

- Both types of systems have physical CPU but the
addressing scheme is different in both.

- In real systems, there is only one type of addresses and
hence the program generated address is the same as
the one sent to memory address bus (lines).

- In virtual systems, there are two types of addresses
which are virtual addresses and real addresses. The
program generated address (also called virtual address)
is not sent directly to memory address bus but has to
be converted by CPU to a new address (Called Real
Address) which then sent to memory bus. The
conversion process is called "Mapping" and has to be
done to each virtual address and hence a Virtual CPU is
relatively slower than Real CPU.

6-2 Addressing Scheme in Paging System
Suppose that we use 32 bits for address then the address
space will be as shown in fig 6.1.

48

0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 3

.

.

.

.

.

.

.

.
0 0 1 1 0 0 1 1 F 0 0 0 0 0 0 0

.

.

.

.

.

.

.

.
F F F F F F F C
F F F F F F F D
F F F F F F F E

0 0 1 1 1 0 1 0 F F F F F F F F

 Fig 6.1 32 bit Address space

Now, let us partition logically this space into equal size
partitions called "Pages" then the single number address can
be written as two numbers [p, d] where p represents "page
number" and d represent "displacement" within this page as
shown in fig 6.2

49

Location
(8 bit data)

byte
Address (in Hex)

Lowest address

Highest address

32 bit
Address
Space

00000

0 0 0 0 0 , 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0
.
.

.

.

.
0 0 0 0 0 , F F F 0 0 0 0 0 F F F

00001

0 0 0 0 1 , 0 0 0
.
.

.

.

.
0 0 0 0 1 , F F F 0 0 0 0 1 F F F

.

.

.

.

.

.

.

.

.

.

.

.

FFFFF
F F F F F , 0 0 0

.
F F F F F , F F E
F F F F F F F F

F F F F F 0 0 0

F F F F F F F E
F F F F F F F F

 Fig 6.2 Addresses in Paging System
 (32 bit address, page size of 4 k byte)

6-3 Virtual Paging System
In this type, program and memory are segmented
(partitioned) into equal size blocks called "pages". Each
program page (p) can be loaded into any memory page (p`)
under the condition of registering page numbers in the "Map
Table" which is created for each program separately as
shown in fig 6.3.

50

]p[
Page

Number

]p,d[
Two

Numbers
Address

locations
]A[

Single
Number
Address

byte

AB04

On disk

AB01

.

.

.

.

AB03

.

.

.

.

Not loaded yet

00000

00001

00002

00003

p
VIRTUAL

PAGE Program (on disk) Memory P

Real page

0000

AB01

AB02

AB03

AB04

Loading

Separate for each program

Map Table (in Memory)P

00000

00001

00002

00003

Virtual page Entry
(One entry for each program page)

~
~

~
~

-

 Fig 6.3 Virtual Paging System

6-4 Direct Mapping of Virtual Paging System
In this type of mapping, the map tables are stored in main
memory and each program generated address has to be
translated to memory address in real time during program
running and this activity is called "Dynamic Address
Translation DAT". The mapping activity is carried out by CPU
as shown in fig 6.4.

51

b p d

P d

.

.

.
p
.
.
.

+

Map Table
Origin in memory

Base
register
in CPU

Addition
operation

b+p

Memory
Read
Cycle

Map table

Da
ta

 re
ad

 fr
om

 m
em

or
y

Real page (memory page)

Memory address formed
in CPU and then sent to

address bus

Virtual
page

(program
page)

Displacement

Program address

Virtual address

b+p

p

b

Real address

-

-

 Fig 6.4 Direct Mapping in Virtual Paging System

6-5 Advantages of Virtual Memory System
The main feature of virtual system is the independency of
program and memory addresses and this introduces many
advantages as follows:

1- The program can be executed without having it all
loaded into memory. When a generated address points
at a page still stored on disk then this page has to be
loaded into memory. This property means that a
program can be larger in size than available memory.

52

2- The program pages should not be loaded into
contiguous memory pages and hence no need to merge
memory holes at all which reduces overhead.

3- The program addresses are absolute and hence no
need to relocate them during loading program pages
into memory.

4- The program pages can be displaced into memory very
easily i.e. without address relocation as long as the
page changes are registered in map table.

5- Memory management will be simplified and hence low
overhead because any program page can e loaded into
any memory page.

6- Sharing program and data pages will be simplified by
using the map tables as shown later.

7- Security and protection will be simplified using map
tables as will be shown later.

The main disadvantage of virtual system is that it is
comparatively slower than real system because of address
mapping.

6-6 Map Table

As mentioned earlier, each program being executed has
aseparate map table resident into memory for the time
duration of execution and then removed. Each program page
has separate entry called program page entry or "Virtual

53

Page Entry". The page entry includes real page number and
some other data as shown in fig 6.5.

Pxwrs

Resident

Read

Write

Execution

Real page number
where program

page (p) is resident
(case of s =1)

p

Program page

Access
Control

bits

Page in
memory

Page on
disk

1

0

-

 Figure 6.5 Page Entry in Map Table
 for Virtual page P

In this figure, we notice the following:

- Access control bits are very useful for achieving
protection scheme of programs and data.

- If S=0 then a program page is still on disk and hence P~

is replaced with track and sector numbers on disk.
- The map table is accessed for each address translation

and hence it is preferred to be resident in fast access
memory such as "Cache".

54

6-7 Sharing in Virtual Paging System
Sharing is easily implemented without causing address
violation exception as shown in fig 6.6.

srwx P

srwx P

Shared page

Map table
for

program 1

Map table
for

program 2

Page entry

Page entry

P

Memory

Map table in memory

-

-

-

 Fig 6.6 Sharing in Virtual Paging System

6-8 Associative Virtual Paging System

In direct mapping, the map table is stored in main memory
but here it is stored in "Associative memory" which also
called "Content Addressable Memory".
In this type of memory, there are two parts for each
location and if we know the first part then the second part
will be known. The map table, here, includes entries for pages
that are resident in memory i.e. there are no entries for
pages that are still on disk as shown in fig 6.7.

55

dP

dP

PP

Read Cycle

There is no addition (+) operation as in
direct mapping

Associative memory

Program address
(virtual)

Memory address
(real)

Map table for one
program

-

-

P

 Fig 6.7 Associative Mapping

It should be noted that the associative memory is quite
expensive. Also, it's worth noting that there are other
virtual systems not only the "paging" one.

56

6-9 Exercise
We have the map table shown in fig 6.8. Calculate the real
address corresponding to virtual address of
00002 ABF.

P P'
0 0 0 0 0 7 8 A 3
0 0 0 0 1 On disk
0 0 0 0 2 B 2 3 C
0 0 0 0 3 On disk
0 0 0 0 4 On disk
0 0 0 0 5 5 4 B B
0 0 0 0 6 B 4 2 3

 Fig 6.8 Map Table Example

Solution:
From above figure, we conclude that the virtual address
(program address) can be written as:
[00002, ABF].
For P= 00002 P`= B23C
Real address=[B23C, ABF] which can be written as:
B23C ABF.

 End of Chapter 6

57

Chapter 7: Memory Management in Virtual

 Memory Systems

7-1 Introduction
In virtual system, management should answer the following
questions:

- When to fetch pages
- Where to place fetched Pages
- Which pages to be replaced when memory is full.

These questions will be answered below but after discussing
some related issues such as page fault, working set, locality,
etc.
Note : We are studying paging systems and hence memory
organization is simple as memory is partitioned into equal
pages.

7-2 Page Fault

When a running program references a page that it is not
resident in memory then a "page fault" exception (interrupt)
occurs which fetches that page and places it into memory.
Management strategy should aim at decreasing page faults
i.e. increasing the time between page faults (interfault time).

7-3 Working Set

A working set of a program (process) is a collection of pages
that a process is actively referencing and it changes with
time. For a program to run efficiently (less page faults), its
working set should be maintained in memory, otherwise,
excessive page activity (Called thrashing) might occur. To

58

avoid thrashing, it is recommended to keep half program
pages into memory.

7-4 Locality

Locality means the tendency of a process to reference
storage in non uniform pattern but highly localized in time
and space and hence we have:

- Time Locality (Temporal Locality): The recently
referenced pages are more likely to be referenced again
in the near future & hence these pages should not be
swapped out to disk.

- Space Locality (Spatial Locality): When a location is
referenced, it is likely the nearby locations will be
referenced as well and hence should not be swapped out
to disk (case of arrays, program code, etc.).

Locality principle helps in achieving "optimality" i.e. the
swapped out page is not referenced soon.

7-5 Page Size
Small page size means a large number of pages and hence
large map tables and excessive overhead. Large page size
decreases map tables size, however, it causes other
problems such as thrashing and less number of jobs in the
multiprogramming environment.

59

7-6 Fetch Strategies
The main strategies are;

1- Fetch on demand: Fetch page when it is needed i.e.
when page fault occurs.

2- Anticipatory fetch: Fetch a page when it is expected
to be needed. Here, it is possible to make use of
spatial locality principle.

7-7 Placement Strategies
It is very simple as any program page can be placed in any
free memory page under the condition of registering
(recording) the page numbers in the related map table.

7-8 Replacement Strategies (Swapping Strategies)
When memory is full and OS needs to load (fetch) new page
from disk then an already resident page has to be swapped
out to disk and replaced by the new incoming page. The
selection of page to be swapped out can be done using one of
following strategies:

7-8-1 Random Page Replacement
- Replace any page at random
- Low overhead (advantage)
- Replaced page may be referenced soon (disadvantage),

therefore, it is rarely used.

60

7-8-2 First In First Out Replacement (FIFO)
Each page is "time stamped" when fetched to memory as in
fig 7.1. The older page (first fetched) is replaced first even
if it has been used recently.
The disadvantage is that elder page may be heavily used by
several programs (users) e.g. text editor.

 Fig 7.1 Time Stamp of Loading

7-8-3 Least Recently Used (LRU)
We replace the page that has not been used for the longest
time without considering its loading time. Here, it is
necessary to use time stamp as in fig 7.2 where time
indicates "referencing" time and not "loading" time

 Fig 7.2 Time Stamp of Referencing

Page Time

Page Time

61

Memory page
Time of loading
program page in to
memory page.

Memory page
number

Time of last page
referencing.

7-8-4 Least Frequently Used (LFU)
Here, it is necessary to count number of page references
and replace the one with least count i.e. less used. Count
stamp is needed as in fig 7.3.

 Fig 7.3 Count Stamp

 End of Chapter 7

Page count

62

Memory page
number

Number of
references

Chapter 8: Thread Concepts

8-1 Introduction
There are two types of programming languages:

1- Single threaded: Allows single thread of control in the
program and hence concurrent activities are not
possible within the same program. Examples of such
language are: C, C++, VB, etc.

2- Multithreaded: Allows several threads of control in the
program and hence concurrent activities are quite
possible within the same program. Examples of such
languages are: C#, VB.NET, JAVA, ADA, etc.

It is worth noting that "single threaded languages" are
also called "non-threaded" or "sequential" while
"multithreaded" are called "threaded" or "parallel".

8-2 Non-Threaded and Threaded Algorithms

Suppose we want to calculate the following expressions:
 Y= (a1+x) ³+ (a2+x)4

 where a1, a2 are constants and x is input variable. This
calculation can be done as follows:

1- Using Non-Threaded Algorithm:
The calculation is shown in fig 8-1 and we notice that it
takes a total of 7 arithmetic operations

63

Start

Input x

Print y

Y1 = a1 + x

Y2 = y1 * y1

Y3 = a2 + x

Y2 = y2 * y1

Y = y2 + y3

Y3 = y3 * y3

Y3 = y3 * y3

stop

Y2 = (a1+x)2

Y2 = (a1+x)3

Y3 = (a2+x)2

Y3 = (a2+x)4

 Fig8.1 Non Threaded Algorithm

64

2- Using Threaded Algorithm:
The calculation is shown in fig 8.2. The number of
arithmetic operations in Thread1 is 3, and in Thread2
is 3.

Start

Input X

Y1 = a1 + x

Y2 = y2 * y1

Y2 = y1 * y1

Y3 = y3 * y3

Y3 = y3 * y3

Y3 = a2 + x

Thread begin

Thread end

STOP

PRINT Y

Thread 1 Thread 2

Y = y2 + y3

No calculation
here

No calculation here
(wait until all

threads completed)

 Fig8.2 Threaded Algorithm

65

Thread1 and Thread2 can be executed concurrently and
hence the equivalent number of operations is 3 only. The
total number of operations is 4 which is less than 7 needed in
non threaded algorithm

8-3 Definition of Thread in OS

A thread is a stream of instructions (line of control) within a
process that can be executed independently of other
threads. This means that a process may create at sometimes
several threads that can be executed concurrently by
several processors or each thread is dispatched for one time
slice.
Another definition of thread is a "Light Weight Process
LWP" as it simulates the original process "Called Heavy
Weight Process HWP" in the running for one time slice when
it is dispatched.
As the thread runs in a process environment, therefore, it
shares a process address space which means that
communication between threads is very simple and variable
sharing is possible without causing address violation problem.

8-4 Motivations of Threads

From above discussion, we deduce that thread motivations
can be summarized as follows:

1- Fast execution of a program as it can make use of
several processors at the same time (case of
multiprocessing) or dispatched more time slices (Case
of Single Processor CPU)

2- Easy communication between threads as they share
the same process address space that created them.

66

3- Easier design of some applications which have a lot of
parallel activities such as a "Word" program.

 Note: The usefulness of multithreading can be made
clear by considering a "Word" program.
Each time a user types a character at the keyboard, OS
receives a keyboard interrupt and issues a signal to the
word program (process). The word process responds by
storing the character in memory and displaying it on the
screen. Because today's computers can execute
hundreds of millions of instructions between successive
keystroke, a word process can execute several other
threads between keyboard interrupts. For example, a
word process may detect misspelled words as being
typed and periodically save a copy of document to disk.
Each feature may be implemented by separate thread.
As a result, the Word process (processor) can respond
to keyboard interrupts even if one or more of its
threads are blocked due to I/0 operation (e.g. saving
copy of file to disk).

8-5 Thread State Diagram (Thread Life Cycle)
A simple thread state diagram is shown in fig 8.3 where we
notice the followings:

67

born

dead

running

ready

blocked

I/O Complete

I/O re
quest

di
sp

at
ch

p
re

em
p

tio
n

start

complete

 Fig 8.3 Simple Thread State Diagram

- A thread has several states in similar way to
process.

- A thread is dispatched for a time slice when
transferred from Ready to Running state.

- When a thread is completed it becomes dead and
will not be allocated CPU time.

68

8-6 Variable Sharing Between Threads
As mentioned earlier, the sharing activity is very simple as all
threads share the same process address space, however,
when a variable sharing is of "Read-Modify-Write" type then
complicated problems may occur and have to be solved as will
be discussed in the next chapter.

 End of Chapter 8

69

Chapter9: Asynchronous Concurrent Execution

9-1 Introduction
 As mentioned earlier, in threaded languages, several
threads belonging to one process may be executed
concurrently (Concurrent Execution) and independently
(Asynchronously). These threads share process address
space and hence can share any variable in that space without
causing address violation exception (interrupt). If variable
sharing is of "Read" type then there is no problem but if it is
of "Read-Modify-Write" type then there is a big problem
that has to be solved, otherwise, errors may occur in the
execution results.

Also, it is worth noting that a similar problem may occur in
the multiprogramming environment when several processes
share a variable of "Read-Modify-Write" type.

From the above, it is clear that we can name this chapter as:
"Access Control to a Write shared variable in a multitasking
environment" or as: "Synchronization of Asynchronous Tasks
in a Multitasking Environment".

 Note: A task usually indicates a thread in a
multithreaded environment or a process in a
multiprogramming environment. This means that a
multitasking OS could be:

- Multithreaded, Single programming.
- Single threaded, Multi programming.
- Multi threaded, Multi programming.

70

Also, the OS in all above cases may support single processor
CPU or multiprocessing i.e. Multiprocessor CPU. (Note that
multi processes means multiprogramming but multiprocessing
means multiprocessors).

9-2 Variable Sharing in Multithreaded Environment
 Suppose we have a variable V in memory which can be
accessed by two threads as shown below (assume single
processor CPU):

Thread1 //definition of thread 1
 Begin
 ------ //instructions

 Load V //Load V from memory to Accumulator
 Add1 //Add 1 to Accumulator
 Store V //Store accumulator to V in memory
 ------ //instructions

 end //end of thread1 definition

Thread2 //definition of thread2
 Begin

 Load V //access to shared available V
 Add1 //Modify
 Store V //Write

71

 end

Program //main program
 begin
 V=20 // initial value of V
 While true do //Continuous Looping
 Threads begin
 Thread1; //Concurrent execution
 Thread2; //Concurrent execution
 Threads end
 end. //end of program

It is clear from the above program that the function of each
Thread is to increment V in each program Loop. Let us
suppose that Thread1 and Thread2 can be completed in less
than a time slice (Quantum) then after one program Loop the
value of V will be 22 which is expected and correct (Single
processor CPU is assumed).
Now, let us suppose that thread1 and thread2 can not be
completed in a quantum then we may have the following
situation:
Thread1 reads V to accumulator, increment accumulator to
become 21 and then quantum expires before storing
accumulator to V. Thread 2 starts and will also read V,
increment accumulator, store accumulator to V and then
quantum expires.
This means that V becomes 21. Now, thread1 will be
dispatched again for another quantum and continue its task
and hence will store its accumulator value to V i.e. store 21.
This means that the value of V after Thread1 and Thread2
completed is 21 and not 22 as it should be.

72

After this example, the variable sharing problem is clear and
we have to find solution to it.

9-3 Critical Section, Mutual Exclusion, Primitives

Now, let's define the following terms:

- Critical Section: Part of the thread that modify the
shared variable.

- Mutual exclusion: When a thread enters its critical
section, it should prevent (exclude) other threads from
doing that and hence no errors occur.

- Mutual Exclusion Primitives: These are the statements
(instructions) that will be used to enforce the mutual
exclusion situation.

The previous program can be rewritten after enforcing
mutual exclusion as follows (assume single processor CPU):

Thread1
 begin

 enter mutual exclusion //set of instructions
 critical section1 //Load V, Add1, Store V
 exit mutual exclusion //set of instructions

 end

Thread 2
 Begin

73

 enter mutual exclusion //primitive
 critical section 2
 exit mutual exclusion //primitive

 end
Program //No errors
 begin
 V=20
 While true do
 Threads begin
 Thread 1;
 Thread2;
 Threads end
 end.

 Note: The program is for demonstration purpose
assuming single processors CPU. The function of the
program is not important.

9-4 Implementation of Mutual Exclusion Primitives
 As mentioned above, the mutual exclusion primitives are
set of instructions that enforce mutual exclusion.
This means that there are many methods of implementation
depending on the type of instructions provided by CPU and on
number of concurrent threads. The famous methods are:

a- Case of no special CPU instructions:
1. For two threads, there are:

74

 - Decker algorithm
 - Peterson algorithm
 2. For n threads, there are:
 - Dijkstra algorithm (using semaphores)
 - Other algorithms

b- Case of using special CPU instructions:
If the CPU is designed to provide special instructions
suitable for implementing primitives, then other
algorithms may be used. These algorithms are,
sometimes, called as "hardware algorithms".

9-5 Example of Primitive Implementation
 The above algorithms will not be discussed here, however,
two implementation examples will be given as follows:

9-5-1 Simple example using normal instructions:
 In this example, special CPU instructions are not available
and hence normal instructions are used. It should be noted
that this is a simple example to show the idea only and hence
it can not be considered as a standard algorithm. The
implementation has several disadvantages as will be shown
later. The example is as follows (assume single processor
CPU):

Program example; //mutual exclusion primitives
 Var threadnumber: integer;
 Thread 1;
 begin

 While thread number=2 do; //wait loop

75

 Critical section 1; //modify shared variable
 Threadnumber=2; //exit mutual exclusion

 end;

Thread 2;
 begin

 While thread number=1 do; //enter mutual exclusion
 Critical section 2; //Modify shared variable
 Thread-number= 1; //exit mutual exclusion

 end;

begin //start of main program
 thread number=1; //initialization
 V=20 ; shared variable
 While true do

 Threads begin
 Thread1;
 Thread2;
 Threads end
 end. //end of program

Studying the above example program, we notice:
- Mutual exclusion is guaranteed
- Execution of critical sections are alternating i.e. if

critical section 1 is executed once then it can not be
76

executed again until critical section 2 is executed. This
alternating behavior may lead to "Dead lock" if either
threads is terminated for some reason.

9 -5-2 Simple Example Using Special Instruction
The implementation of primitives becomes easier if CPU has
special instructions such as:

 Test and set (a, b) //a, b are Boolean

When executed: b a
 True b

These two operations can not be divided, hence, the quantum
can not expire in the middle of them.

An example program, using test and set, is shown below
(assume single processor CPU)

Program example; //mutual exclusion by testandset
 Var active: Boolean;
 Thread1;
 Var onecannotenter : Boolean;
 begin
 While true do //start looping
 begin
Enter mutual Onecannoteneter=true;
 exclusion While one cannotenter do
 primitive Testandset (onecannotenter,active);
 Critical section1; //active is true
Exit mutual active=false;
exclusion primitive

77

 other stuff1
 end
 end;

Thread2;
 Var twocannoteneter=boolean;
 begin
 While true do //thred2 looping
 begin
 twocannotenter=true;
 loop while while twocannotenter do
 twocannotenter testandset (twocannotenter,
= true active);

 critical section 2; //active is true
 active=false;
 othersuff2;
 end
 end;

begin //program start
 active=false;
 threads begin //concurrent execution
 Thread1; //continuous Looping
 Thread2; //continuous looping
 threads end
end. //end of program

 Note: In the above examples, we assumed single
processor CPU and time slices are dispatched to
threads. Also, the example programs are for
demonstration purposes and have no useful functions.

 End of Chapter9
78

Chapter 10: Disk Performance Optimization

10-1 Introduction

In recent years, processors & memory speeds have increased
more rapidly than those of hard disk. As a result, processes
requesting data from disk tend to experience long service
delay. In this chapter, we discuss how to optimize disk
performance by recording disk requests to increase
throughput, decrease response time & reduce the variance of
response times. We also discuss how OSs reorganize data on
disk & exploit buffers & caches to boost performance.
Finally, we discuss Redundant Arrays of Independent Disks
(RAIDs), which improve disk access times & fault tolerance
by servicing requests using multiple disks at once.

10-2 Characteristics of Moving-Head Disk Storage
The general structure of hard disk is shown in fig 10.1. In
this figure, we notice the followings:

79

Actuator

Direction of
movement

Spindle
(rotating thousands of
revolutions per minute)

Platter (2 surfaces)

Track

Track

Platter (2 surfaces)

Read/write head
(2 for each platter)

Cylinder (4 tracks)

 Fig 10.1 Disk Structure
 (Schematic Side View)

- The disk storage may consist of several platters & each
has a separate read/write moving-head. All heads are
fixed to the same actuator & hence move together to
select certain cylinder. The cylinder is a set of tracks
on all surfaces. Usually, at one time, only one head is
active & deals with one track of the whole cylinder. This
means that OS has to select the proper head to
read/write (r/w) data.

- Each track is divided to several sectors as shown in fig
10.2 each sector is of 512 byte size.

80

platter

Sector
(512 byte)

Track

Sector
(512 byte)

 Fig 10.2 Tracks & Sectors of Disk

From the above, it is clear that for the OS to R/W data
from disk, it needs to:

1- Specify the proper surface containing the data & hence
the proper moving head.

2-Specify the track & sectors containing the data on that
surface.

3- Instruct actuator to move head to the proper track.
This movement takes time which is called "Seek Time" &
its average value is in the range of few milliseconds (e.g.
7 msec).

4- The platter has to be rotating & the head should wait
for the proper sector in the track to get the data.
This time depends on revolution speed & its average
value is half of one revolution period & is usually of few

81

milliseconds value (e.g. 4 msec). This time is called
"Latency Time".

5- When the head is on the proper sector, it starts
reading/writing data & also this process takes time
depending on number of sectors to be read.

 This time is called "Transmission Time" as shown in
 fig 10.3.

From the above, It is clear that a few milliseconds are
necessary to R/W data from the disk while the CPU can
execute millions of instructions in thatv time.

data

Head

Disk arm

Seek Time

Rotational
latency time

Transmission time

The new track

Current track

 Fig 10.3 components of disk access
 (Total time of few milliseconds) e.g. 10 msec

10-3 Why Disk Scheduling is Necessary

82

Many processes can generate requests for reading & writing
data on a disk simultaneously. Because these processes
sometimes makes requests faster than they can be serviced
by the disk, waiting lines or queues build up to hold disk
requests. Some early computing systems simply serviced
these request on a "First Come First Served FCFS" basis, in
which the earliest arriving request is serviced first. FCFS
exhibits a random seek pattern in which successive requests
can cause time consuming seeks from the innermost to the
outermost cylinders (tracks). To reduce the time spent
seeking records, it seems reasonable to reorder the request
queue in some manners other than FCFS. This process, called
disk scheduling, can significantly improve throughput.

The two most common types of scheduling are "Seek
optimizing" & "Rotational Optimizing". Because seek times
are usually greater than latency times, most scheduling
algorithms concentrate on minimizing total seek time for a
set of requests.

10-4 Disk Scheduling Strategies
The strategies are evaluated by the following criteria:
- Throughput: The number of requests serviced per unit

time. The maximum number is the better.
- Mean response time: The average time spent waiting for a

request to be serviced. The minimum
time is the better.

- Variance of response time: The difference between the
request waiting time and the

83

mean response time. The
minimum variance is the better.

Here, it is necessary to check the possibility of a request
indefinite postponement.

 There are many strategies & we shall discuss some of them
as follows:

10-4-1 First Come First Served (FCFS) Disk Scheduling
This has been already discussed & it suffers from long seek
time & hence low throughput especially under heavy loads.

10-4-2 Shortest Seek Time First (SSTF)
In this strategy, the next request to be serviced is the one
that is closest to the R/W head & thus incurs the shortest
seek time.
The main problem is the possibility of indefinite
postponement for the innermost & outermost tracks
especially under heavy loads i.e. many requests are coming all
the time.

10-4-3 Scan Disk Scheduling
Here, the disk head moves from the outer track to the inner
& then in the opposite direction. The request to be serviced
is the one that its track is ahead of the head in the motion
direction.
This means that the requests coming in front of the head in
the motion direction are serviced first.
The scheduling may suffer indefinite postponement or long
waits for requests of innermost and outermost tracks under
heavy load.

84

10-4-4 C-Scan Disk Scheduling
C-Scan mean circular scan & it is similar to SCAN but the
head doesn't service requests when moving in the opposite
direction i.e. it service requests in only one direction & hence
decrease the possibility of indefinite postponement of
outerside tracks.

10-4-5 Other scheduling strategies
There are also other strategies such as:

• Fscan
• N-Step Scan
• Look Scan
• C-Look Scan
• Shortest Latency Time First (SLTF)
• Shortest Positioning Time First (SPTF)
• Shortest Access Time First (SATF)

10-5 Caching & Buffering
Many systems maintain a "disk cache buffer", which is a
region of main memory that the OS reserves for disk data.
In one context, the reserved memory acts as cache, allowing
processes quick access to data that would otherwise need to
be fetched from disk. The reserved memory also acts as a
buffer, allowing the OS to delay writing modified data until
the disk experiences a light load or until the disk head is in a
favorable position to improve I/O performance.

The disk cache buffer presents several challenges to OS
designers such as:
- Size of cache buffer
- Replacement strategy
- Inconsistency of data when power or system fail.

85

Many of today's hard disk drives maintain an independent
high-speed buffer cache (on board cache) of several
megabytes it's not related to main memory i.e. not part of it
(i.e. can't be addressed by CPU directly).

Also, some hard disk controllers (e.g. SCSI, RAID) maintain
their own buffer cache (normal RAM) separate from main
memory.

ALL buffers are used to enhance the disk performance i.e.
increase the speed of data retrieval.

10-6 Redundant Arrays of Independent Disks (RAID)

Previously, we have been discussing non RAID disks that have
the following features:

- The disk includes several platters. Each platter has two
R/W heads. ALL the heads are mounted on one actuator
& hence move together.

- Usually, the OS determines the location of data on
which surface of which platter & instructs the proper
head to R/W.

- At any one time, only one head is used for reading or
writing i.e. it is not possible to make multiple accesses
with several heads.

In other words, the disk has multiple heads but only one of
them is used at any one time.

86

- The file is usually stored on one surface of one platter
only unless it is very large.

- The only objective of this disk structure is to get large
storage volume.

In the RAID structure, the philosophy is completely
different from the nonRAID as it has the following
features:

- The disk includes several platters & heads as before but
each head here has its own actuator and hence can move
independently of the other heads. This will enable
multiple reads & writes to be carried out at the same
time & hence faster disk response.

- The file may be stored on one platter or on several ones
& hence it is possible to read/write several parts of the
same file at the same time & this means fast R/W.

- Reliability issue is handled here and hence we find out
that an error correcting code (ECC) is being used &
hence more storage is needed and this is reason for the
term "Redundancy". The redundancy will help in
correcting errors & hence the RAID system will be
"fault tolerant" in this case.

From the above, we conclude that the RAID structure is
equivalent to the use of multiple "Independent" disks &
therefore we are going to use the word "disk" instead of
platter when describing the RAID technology (RAID
structure).

87

There are several methods for using the disks in the RAID
system & these methods are identified by the following
names: level0, level1, level2, etc.
We are going to discuss some of these levels in a brief way
as showing later.

In RAID systems we use the following terms:
- Data Striping: entail dividing data into fixed size blocks

called "strips".
Contiguous strips of a file are typically placed on
separate disks so that request for file data can be
serviced using multiple disks at once, which improves
access times (see fig 10.4).

- Stripe: consists of the set of strips at the same
location on each disk of the array.

- Fine grained strips: small size strips & this tend to
spread file data across several disks & hence reduce
access time.

- Coarse grained strips: large size strips & this enable
some files, to fit entirely on one strip & hence the
access time is as in the Non-RAID system, for that file,
however, several requests for several files can be
serviced together (Simultaneously).

Notes: The RAID systems (levels) take into consideration
the following factors: Access time (Multiple access for
one file), fault tolerance, Multiple accesses (for several
files on several disks)

88

RAID interface
(controller)

strip1 strip2 strip3 strip4

strip1 strip2 strip3 strip4
stripe

Strip1+ strip2 + strip3+
strip4

File

Disks

 Fig 10.4 Strips & stripe in RAID systems

10-6-1 RAID Level :
RAID level uses a striped disk array with no fault
tolerance and hence has no redundancy. The disk contains
data only & there is no ECC data.
In level , multiple reads & writes are possible.
The striping level (size) is a block.
Level is sometimes not considered as RAID as it has no
redundancy (No ECC).

10-6-2 RAID Level1 (Mirroring)
This level employs disk mirroring (shadowing) to provide
redundancy, so each disk in the array is duplicated. Stripes
are not implemented in level1 & hence multiple access for the
same file is only possible on reading but not on writing. On
writing, the same data has to be written on both disks (the
original & the mirror) but on reading, 2 different parts of
the same file can be read at the same time from the original

89

& mirror disks. The mirror technology enhances reliability &
restricted multiple access but doubling the cost.

10-6-3 RAID Level2
RAID level2 arrays are striped at the bit level, so each strip
stores one bit. This means that adjacent bits of file are
stored on different disks. Level2 arrays are not mirrored,
which reduces the storage overhead incurred by Level1.
The fault tolerance is achieved here by using hamming error
correcting codes (hamming ECCs). The error code bits are
stored on separate disks (parity disks).
Of course, each stripe of one bit size on data disks has a
stripe of one bit size on parity disks. This means that each
group of data bits has a corresponding group of ECC bits.
The clear problem here is that if the OS wants to write few
bits of the group (stripe), it has to read all data stripes first
& then modify the necessary data bits & then calculate the
ECC bits & at last store the new data & ECC bits. This is
called "read-modify-write" cycle.
From the above, we notice that the storage overhead is
decreased compared to mirror system but the multiple
access for several files is not possible as all disks will be
occupied for one file request (remember that the adjacent
file bits are distributed among the disks, also, it is necessary
to read the parity disks).

 Note: In hamming, we can correct one data bit error.
The number of ECC bits are as follows:

90

 Number of number of
 data bits ECC bits

4 3
11 4
26 5

It is clear that the larger data stripe, the better & hence
the more data disks in the array (stripe) are the better.

10-6-4 RAID Level3
RAID level3 stripes data at the bit or byte level but use
parity checks for fault tolerance instead of Hamming. In
parity check, we use only one bit (even or odd parity) & this
bit does not locate the place of error (as incase of Hamming)
but indicates only its existence. When the error occurs, the
OS will inform the user immediately who has to find out the
erroneous disk and replace it. The data on the faulty disk can
be regenerated automatically with the help of other data
disks & the parity disk. The advantages of such system:

1- Large storage.
2- Fault tolerance with one extra disk (one parity disk).
3- Multiple access for one file is possible and hence fast

access time.

Of course, multiple access for several files is not possible as
any file request will occupy all of the disks.

10-6-5 RAID Level4
RAID Level4 systems are striped using fixed size blocks
(typically much larger than a byte) & use one disk for parity
(even or odd parity). The difference with level3 is that the

91

file may occupy fraction of disks & not all of them
(remember the coarse grained stripes) & hence multiple
requests for multiple files may be possible at the same time.
Here, we should remember that when reading data from
disks, it is not always necessary to read parity bits as these
bits are stored not for error detection but mainly for error
correction (of one bit –usually one disk may be faulty-).

 Note: Multiple writes is not possible because the parity
disk will be occupied for one write.

10-6-6 RAID Level5

RAID Level5 arrays are striped at the block level & a parity
check (even or odd) is used like in level4. The difference
with level4 is that the parity bits are not located on one disk
but distributed throughout the arrays of disks. This means
that disk1 carries parity bit1, disk2 carries parity bit2, & so
on. The advantage of this level is that multiple writes (writes
for several files) are possible because the parity bits are not
stored on one disk as the case of level4.

10-6-7 Other RAID Levels
There are other levels such as:

- RAID Level6
- RAID Level10+1
- RAID Level10
- RAID Level10+3, 0+5, 50, 1+5, etc.

92

10-6-8 comparison of RAID Levels

The properties of different RAID levels can be summarized
as follows:

 From multiple files

RAID
Level

Read
concurrency

Write
concurrency

Redundancy Striping
Level

 0 Yes Yes None Block

 1 Yes No Mirroring None

 2 No No Hamming
ECC

Bit

 3 No No Even or odd
parity

Bit/Byte

 4 Yes No Even or odd
parity

Block

 5 Yes Yes Distributed
even or odd
parity

Block

 Notes:
1- When striping level is bit or byte. This means that the

file data are distributed on all the disk arrays & hence
it is not possible to service multiple requests for several
files, however, the single file will be read/write very
quickly i.e. fast access (fast data transmission).

When block level is used then the file may occupy few
disks of the array (stripe) & the others may be for
other file, & hence multiple files may be serviced.

93

2- The main purpose of redundancy is not to detect errors
but to correct it & hence, it is not always necessary to
read parity disks during read cycle & this allows multiple
read for several files when block (coarse grained
striping) striping is used.

3- Hamming ECC is not necessary as the faulty disk may be
discovered by other means & hence one parity (even or
odd) bit is enough for error detection & correction. In
other words, the parity bit will inform us about the
existence of error and then by other means (electrical,
mechanical) we can find out the faulty disk & hence
regenerates its data from knowing the other data bits on
the data disks & the parity bit from the parity disk.

 Note: in RAID, we discover that there are errors by
using parity check. Then by some means we find the
faulty disk & then we regenerate the data on the faulty
disk by making parity of all other data disks (except the
faulty one) & of the parity disk itself.

Conclusions;
 The parity check can be used to correct data if the
erroneous bit location is known.
Once we know this location, we can find the missing bit by
making parity of all other data bits & the parity bit.
In RAID, we know location by knowing the faulty disk by
different means & this starts by finding parity check error.

From the above we notice that RAID systems features are:
94

- Large storage volume as it uses arrays of disk.
- Fast data transmission as many heads work together

(Independent Disks).
- Fault tolerance with low overhead storage by using

parity check (redundancy).

 End of Chapter 10

95

Chapter eleven: Deadlock and Postponement
-One problem that arises in multiprogrammed systems is
deadlock. A process or thread is in a state of deadlock if it
is waiting for a particular event that will not occur.
-In multiprogrammed computing systems, resources sharing
are one of the primary goals. When resources are shared
among a set of processes, each process maintaining exclusive
control over particular resources allocated to it, deadlocks
can develop in which some processes will never be able to
complete execution, the result can be loss of work and
reduced system throughput and system failure.
11.1- Examples of Deadlock
Simple Resource Deadlock
-Most deadlocks in operating system develop because of the
normal contention for dedicated resources (resources that
may be used over time by many processes but only one
process at a time, sometimes called serially reusable
resources).

-P1 holds R1 and needs R2 to continue.
-P2 holds R2 and needs R1 to continue.

R1

P
1

R2

P
2

Resource allocation graph

R
1
 is allocated to P

1

R
2
 is allocated to P

2

P
1
 is requesting R

2

P
2
 is requesting R

1

96

Each process is waiting for the other to free a resource that
the other process will not free.
This is circular wait is characteristic of deadlocked systems.
Deadlock in Spooling Systems
-A spooling system improves system throughput by
disassociating from slow devices.
-To speed the program's execution, a spooling system routes
output pages to a much faster device (hard disk) where they
are temporarily stored until they can be printed.
-Some spooling systems require that the complete output
from a program be available before printing can begin.
Several partially completed jobs generating pages to a spool
file can become deadlocked if the disk's available space fills
before any job completes.
-The user or system administrator may kill one or more jobs
to make sufficient spooling space available for the remaining
jobs to complete.
-One way to make deadlocks less likely is to provide more
space for spooling files than is to be needed.
-A more common solution is to restrain (hold down) the input
spoolers so that they do not accept additional print jobs
when the spooling files begin to reach some saturation
threshold. This may reduce system throughput but it is the
price paid to reduce the likelihood of deadlock.
-Today's systems might allow printing to begin before the
job is completed. Spooling file can begin emptying while a job
is still executing. (Play video film before download fully)
-In many systems spooling space allocation has been made
more dynamic, so that if existing space starts to fill, then
more space may be made available.
11.2- Related Problem
-In any system that requires processes to wait as a result of
resource-allocation and process scheduling decisions. A

97

process may be delayed indefinitely while other processes
receive the system's attention. This situation is called
indefinite postponement, indefinite blocking or starvation,
can be as devastating (overwhelming) as deadlock.
- Indefinite postponement may occur because of biases in a
system's resource-scheduling policies. When resources are
scheduled on a priority basis, it is possible for a given
process to wait for a resource indefinitely, as processes with
higher priorities continue to arrive.
-Some systems prevent indefinite postponement technique is
called aging. The waiting process's priority will exceed the
priorities of all processes and then it will be serviced.
11.3- Resource Concepts
-Resources that is preemptible such as processors and main
memory. Processors are the most frequently preempted
resources on a computer system.
-Processors must be rapidly switched among all active
processes competing for system service to ensure that these
processes progress at a reasonable rates.
-A user program currently occupying a particular range of
locations in main memory may be removed or preempted by
another program.
-Certain resources are non-preemptible; they can not be
removed from the processes to which they are assigned until
the processes voluntarily release them (scanner).
-Some resources may be shared among several processes,
while others are dedicated to a single process at a time.
-Some resources may be shared among several processes,
while others are dedicated to a single process at a time.
-If the operating system maintained in main memory a
separate copy of the editor for each program, these would
be a significant amount of redundant data and wasting
memory.

98

-A better technique is for the operating system to load one
copy of the code in memory and to make the copy available to
each user.
-If a process were allowed to modify this shared code, as a
result, this code must be reentrant meaning the code is not
modified as it executes.
-Code that may be changed but is reinitialized each time it is
used is said to be serially reusable.
-Reentrant code may be shared by several processes
simultaneously, whereas serially reusable code may be used
correctly by only one process at a time.

11.4- Four Necessary Conditions for Deadlock
• A resource may be acquired exclusively by only one

process at a time (mutual exclusion)
• A process that has acquired an exclusive resource may

hold that resource while the process waits to obtain
other resources (wait-for-condition, also called the
hold-and-wait condition)

• Once a process has obtained a resource, the system
cannot remove it from the process's control until the
process has finished using the resource (non-preemption
condition)

• Two or more processes are locked in a circular chain, in
which each process is waiting for one or more resources
that the next process in the chain is holding (circular-
wait condition)

Taken together, all four conditions are necessary and
sufficient for deadlock to exist. If they are all in place, the
system is deadlocked.

99

11.5- Deadlock Solutions
-Deadlock prevention: to remove any possibility of deadlock
occurring. Prevention is a clean solution as far as deadlock
itself is concerned, but prevention methods can often result
in poor resource utilization.
-Deadlock avoidance: less conditions to get better resource
utilization. Avoidance methods do not precondition the
system to remove all possibility of deadlock. Instead they
allow the possibility to loom (appear), but whenever a
deadlock is approached, it is carefully sidestepped.
-Deadlock detection: methods are used in which deadlocks
can occur. The goal is to determine if a deadlock has
occurred, and to identify the processes and resources that
are involved.
-Deadlock recovery: methods are used to clear deadlocks
from a system so that it may operate free them, and so that
the deadlocked processes may complete their execution and
free their resources. Recovery requiring that one or more of
the deadlocked processes be flushed from the system. The
flushed processes are normally restarted from the beginning
when sufficient resources are available.
11.6- Deadlock Prevention
-Each process must request all its required resources at
once and cannot proceed until all have been granted.
-If a process holding certain resources is denied a further
request, it must release its original resources and if
necessary request them again together with additional
resources.
-A linear ordering of resources must be composed on all
processes, i.e., if a process has been allocated certain
resources, it may subsequently (after) request only those
resources later in the ordering.

100

11.6.1- Denying the “wait-for” condition
-The first strategy requires that all of the resources a
process needs to complete its task must be requested at
once.
-The system must grant them on an all or none basis.
-If all the resources needed by a process are available, then
may grant them all to the process at once and the process
may continue to execute.
-If they are not all available, then the process must wait
until they are, while the process waits, it may not hold any
resources.
-Thus the wait-for condition is denied, and deadlocks cannot
occur, but it wastes resources.
-For example: a program executes 4 tape drives at one point
in its execution must request and receive all 4 before it
begins executing.

• If all 4 drives are needed throughout the execution of
the program, then there is no serious waste.

• If the program needs only one tape to begin execution
and does not need the remaining tape drives for several
hours, means that substantial resources will sit idle for
several hours.

-To get better resource utilization:
• Divide a program into several threads that run relatively

independently of one another. Then resource allocation
can be controlled by each thread rather than for the
entire process. This can reduce waste but involves a
greater overhead in application design and execution.
This cause indefinite postponement.

• One way to avoid this is to handle the needs of the
waiting processes in first-come-first-served order.
(wasting of resources, or if gradually accumulating
means sit idle, or the user should pay to get quick

101

service but this would destroy the predictability of
resource charges)

11.6.2- Denying the “no-preemption” condition
-Suppose a system does allow processes to hold resources
while requesting additional resources. As long as sufficient
resources remain available to satisfy all requests, the system
cannot deadlock.
-A process hold resources that a second process may need in
order to proceed, while the second process may hold
resources needed by the first process-a two process
deadlock.
-When a process holding resources is denied to request for
additional resources, it must release the resources it holds
and if necessary, request them again together with the
additional resources.
-This denies the no-preemption condition-resources can
indeed be removed from the process holding them prior to
the completion of that process.
-When a process releases resources, it may lose all of its
work to that point (high price). If this occurs infrequently,
then this strategy provides relatively low-cost means of
preventing deadlocks.
-If the system favors processes with small resource
requests over those requesting substantial (considerable)
resources that alone could lead to indefinite postponement.
As a process requests additional resources, this strategy
requests the process to give up all the resources it has and
request even larger number.
-So indefinite postponement can be a problem in a busy
system. Also this strategy requires all resources to be
preemptible, which is not always the case (e.g. printers
should not be preempted while processing a print job).

102

11.6.3- Denying the Circular-Wait Condition
-In this strategy assigning a unique number to each resource
that the system manages, and creating a linear ordering of
resources. A process must then request its resources in a
strictly ascending order.
-If a process request R3 (3 is the resource number) then it
can request only resources with a number greater than 3.
Because all resources are uniquely numbered and because
processes must request resources in ascending order, a
circular wait cannot develop.

103

-One disadvantage is that resources must be requested in
ascending order by resource number. If new resources are
added or old ones removed at an installation, existing
programs and systems may have to be rewritten.
-Another difficulty is determining the ordering of resources
in a system. The resource numbers should be assigned to
reflect the order in which most processes actually use the

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

P2

P1

P1

P1

P1

P3

P2

P1 has obtained R3,
R4, R6, R7, R8

No circular wait can
develop because all

arrows must point
upward

104

resources. For processes matching this ordering, more
efficient operation may be expected, but for processes that
need the resources in a different order resources must be
acquired and held possibly for long periods of time, before
they are actually used. This can result in poor performance.
-This strategy truly eliminates the possibility of a circular
wait, yet it diminishes a programmer's ability to freely and
easily write application code that will maximize an
application's performance.
11.7- Deadlock Avoidance with Dijkstra's Banker's
Algorithm
-It defines how a particular system can prevent deadlock by
carefully controlling how resources are distributed to users.
-A system groups all the resources it manages into resource
types. Each resource type corresponds to resources that
provide identical functionality (Manage only one type of
resource). The algorithm prevents deadlock in the operating
system that exhibit the following properties:

• The operating system shares a fixed number of
resources, t, among a fixed number of processes, n.

• Each process specifies in advance the maximum number
of resources that it requires to complete its work.

• The operating system accepts a process's request of
that process's maximum need does not exceed the total
number of resources available in the system, t, (the
process cannot request more than the total number of
resources available in the system).

• Sometimes, a process may have to wait to obtain an
additional resource, but the operating system
guarantees a finite wait time.

• If the operating system is able to satisfy a process's
maximum need for resources, the process guarantees

105

that the resource will be used and released to the
operating system within a finite time.

-The system is said to be in a safe state if the operating
system can guarantee that all current processes can
complete their work within a finite time. If not then the
system is said to be in an unsafe state.
-Four terms that describes the distribution of resources
among processes:

• Let max(Pi) be the maximum of resources that Pi

requires during its execution (max(P3)=2).
• Let loan(Pi) represents Pi's current loan of a resource,

where its loan is the number of resources that process
has already obtained from the system loan(P3) = 4 means
the operating system allocate four resources.

• Let claim(Pi) be the current claim of a process where a
process's claim is equal to its maximum need minus its
current loan. max(P3)=6, loan(P3)=4 then claim(P3)=
max(P3)- loan(P3)=6-4=2

• Let a be the number of resources still available for
allocation. This equivalent to the total number of
resources (t) minus the sum of the loans to all the
processes in the system i.e.: a = t - ∑

=

n

i 1
loan(Pi)

3 processes, 12 resources, where P1 has 2 resources, P2
has 1 resource, P3 has 4 resources then the number of
available resources, a=12-(2+1+4) =5

106

11.7.1- Example of a Safe State
A system has 12 resources, 3 processes sharing the
resources

Process max(P1)
maximum
need

loan(P1)
current
loan

claim(P1)
current claim

P1 4 1 3
P2 6 4 2
P3 8 5 3

a=12-10=2
-This state is safe because it is possible for all three
processes to finish.
-P2 has 4 and need 2.
-System has 12, 10 are in use and 2 are available. If the
system allocates these 2 to P2 then P2 can run to completion
and release 6 resources, enabling the system to allocate
them to P1 and P3 enabling both to finish.
11.7.2- Example of Unsafe State
A system has 12 resources, 3 processes sharing the
resources

Process max(P1)
maximum
need

loan(P1)
current
loan

claim(P1)
current claim

P1 10 8 2
P2 5 2 3
P3 3 1 2

a=12-11=1
-P1 requests and is granted the last available resource. A
three-way deadlock could occur if indeed each process needs
to request at least one more resource before releasing any
resources to the pool.

107

-An unsafe state does not unify the existence of deadlock,
nor even that deadlock will eventually occur what an unsafe
state does imply is simply that some unfortunate sequence of
events might lead to a deadlock.
11.7.3- Example of Safe-State-to-Unsafe-State
Transition
-The resource-allocation policy must carefully consider all
resource requests before granting them or a process in safe
state could enter an unsafe state.
-For example suppose the current state of a system is safe
as the following:
A system has 12 resources, 3 processes sharing the
resources

Process max(P1)
maximum
need

loan(P1)
current
loan

claim(P1)
current claim

P1 4 1 3
P2 6 4 2
P3 8 5 3

The current value of a is 2.
P3 requests a resource.
If the system grants this request then the new state would
be as in the following:

Process max(P1)
maximum
need

loan(P1)
current
loan

claim(P1)
current claim

P1 4 1 3
P2 6 4 2
P3 8 6 2

108

The current value of a is 1 which is not enough to satisfy the
current claim of any process, so the state is now unsafe.
11.7.4- Banker's Algorithm Resource Allocation
-The mutual exclusion, wait-for and no-preemption conditions
are allowed. Processes are indeed allowed to hold resources
while requesting and waiting for additional resources, and
resources may not be preempted from a process holding
those resources. Processes claim exclusive use of the
resources they require.
-Processes ease onto the system by requesting one resource
at a time. The system may either grant or deny each request.
If a request is denied, then the process holds any allocated
resources and waits for a finite time until that request is
eventually granted.
-The system grants only requests that result in safe states.
Resource requests that would result in unsafe states are
repeatedly denied until they can eventually be satisfied.
11.7.5- Weaknesses in the Banker's Algorithm
-It requires that there be a fixed number of resources to
allocate, but we cannot count on the number of resources
remaining fixed (number of resources vary dynamically).
-It requires that the population of processes remains fixed
but this is unreasonable; the process population is constantly
changing.
-It requires that the banker (banker) grant all requests
within a finite time (much better is needed in real-time
system).
-It requires that processes state their maximum needs in
advance-but resource allocation becoming increasingly
dynamic, it is difficult to know the maximum needs.

109

11.8- Deadlock Detection
-Deadlock detection is the process of determining that a
deadlock exists and identifying the processes and resources
involved in the deadlock.
-Deadlock detection algorithms generally focus on
determining if a circular wait exists, given that the other
necessary conditions for deadlock are in place.
11.8.1- Resource-Allocation Graphs

A directed graph indicates resource allocations and requests.
Resource-allocation and request graphs change as processes

P
1 R

1

P
1
 is requesting a resource of type R

1

((there are 2

R
1

P
2

One of 2 identical resources of type R
2

has been allocated to P
2

P
3

R
3

P
4

P3 is requesting R3 which
has been allocated to P4

R
4

P
6

R
5

P
5

P
5
 has been allocated R

5

that is being requested
by P

6
 that has been

allocated R
4
 that is being

requested by P
5

the classic circular)
(wait

110

request resources acquire them and eventually release them
to the operating system.
11.8.2- Reduction of Resource-Allocation Graphs
-One technique useful for detecting deadlocks involves graph
reductions, in which the processes that may complete their
execution. If any processes (and their resources) that will
remain deadlocked, if any, are determined.
-If a process's resource requests may be granted, then we
say that a graph may be reduced by that process. This
reduction showing how the graph would look if the process
was allowed to complete its execution and return its
resources to the system.
-The graph is reduced by removing the arrows to that
process from resources that allocated to that process and
from that process to resources requests of that process. If
a graph can be reduced by all its processes then there is no
deadlock.
-If a graph cannot be reduced by all its processes then the
irreducible processes constitute the set of deadlocked
processes in the graph. The order in which the graph
reductions are performed does not matter. The final result
will always be the same.

111

 End of OS

P
7

R
6 P

8

R
7

P
9

P
7

R
6 P

8

R
7

P
9

Reducing by P
7

P
7

R
6 P

8

R
7

P
9

Reducing by P
8

P
7

R
6 P

8

R
7

P
9

112

Reducing by P9

